Prototyping the Emergency Smoke Response System (ESRS)

Sim Larkin, Tara Strand, Robert Solomon (US Forest Service AirFire Team)

Sean Raffuse, Dana Raffuse, Lyle Chinkin (Sonoma Technology)

Tim Brown (Desert Research Institute)

Pete Lahm (USFS), Trent Procter, Suraj Ahuja (USFS Region 5)

CARPA October 16, 2008

Smoke Modeling

- Scale: kilometers to 100's of km; days
- Multiple, ill-defined sources across a wide region
- Real-time forecasts as well as after-action

Generally: 3-D Met models; PM (+chemistry); server-run; web-delivered

Overall Points

- Smoke modeling tools are rapidly evolving
- New modeling improvements mean faster tool development
- Standard "Suite" of tools under development (e.g. ESRS)
 - Southern California 2007
 - Northern California 2008

Smoke is a growing issue

More fire *Increasing wildfires, WFU and Rx fires*

Decreased public acceptance of smoke More health awareness, encroachment (WUI)

Tightening regulations NAAQS standards $(PM_{2.5} \& O_3)$, regional haze rule, exceptional events standards

There is more we can do - now

Smoke Tools are inherently technology dependent Even more so than weather forecasts

Too technological to be done on desktops/laptops

But technology has advanced massively Now we have the world-wide web

The State of Smoke Tools

MODELS + USER | DECISION SUPPORT APP

National Smoke Products

National Weather Service

smoke only (12-km) & aq (36-km)

10 30 30 40 50 50 70 80 90 100 110 120 130 140

2006 2PM EST
1922

STI

All based on the modular BlueSky Smoke Modeling Framework developed by the USFS, STI, & partners

FCA

- regional hi-res (4-km)
- national 12-km 3-day (based on NWS NAM)
- national 36-km 7-day (based on NWS GFS)

Lessons Learned

Long-range transport looks good;

Underprediction of ground concentrations

Fire information is of poor quality

Models differ substantially

Plume rise needs fixing

SMARTFIRE: Reconciled fire data

- Ground reports
- Satellite fire detects (NOAA HMS)
- Expert users (IC Teams)

The BlueSky Framework:

Logical, Modular Steps from Fire Info to Smoke Impacts

Smoke and Emissions Model Inter-comparison Project (SEMIP)

Just funded

Large-scale, Inclusive

Based on other "MIPs"

Plume Rise

- Fires are currently modeled as single plumes, lofting smoke unrealistically high and lowering ground impacts
- In reality, fires are made of many burning areas lofting smoke to various heights

Southern California Fires 2007

- asked by USDA for data
- supplemented other sources (e.g. NWS)
- SMARTFIRE (HMS&ICS) fire info
- CMAQ and CALPUFF model outputs
- Used:

internally by USFS fire resource managers; in Smog Stories and press releases by USDA & AirNow; on White House conf call

Northern California Fires 2008

State of Emergency / Presidential Declaration

Enormous Smoke Impacts (> 5 million people affected)

USFS AirFire Team & Partners (STI, DRI) asked to develop prototype ESRS by Region 5

Federal / Private / University partnership

Rapid Response basis

Emergency Smoke Response System: Experimental Predictions

Forecast

Model Output

Monitoring

FOCUS:

- 1. Additional monitoring
- 2. Higher resolution
- 3. On-the-fly trajectories
- 4. Other species (e.g. Ozone)
- 5. Smoke apportionment by source fire
- 6. Provide Forecasts

 expert interpreted forecast text and graphics

Very High Resolution

High resolution (1.33 km) meteorology and smoke dispersion

For both fire behavior and air quality

Winds, temperature, RH, mixing height, and smoke PM_{2.5}

Java animations available online

On Demand Trajectories

Ozone (experimental only) CMAQ OZONE

ppb

20080710 00z run STI-NASA-USFS Experimental Realtime Modeling System

Smoke Exposure Contribution Map

Combines modeled emissions and transport to determine which fires are likely to contribute to unhealthy air

Exceptional Event Analysis

To determine whether National Ambient Air Quality Standard (NAAQS) exceedances are the result of an exceptional event (e.g., one or more large wildfires) it must be shown that the exceedances would not have occured without the event. PM_{2.5} is modeled as two separate layers by the BlueSky Gateway Experimental Modeling System, one layer for smoke and one for all other pollution sources.

The modeled 24-hour $PM_{2.5}$ concentrations from non-fire, fire, and combined sources are shown here. In this case, fire sources dominate. The modeling suggests that none of the analysis cities would have violated the standards if the fires were absent and these exceedances could be argued to be exceptional events.

Observed concentrations were also examined to verify the model predictions. Measurments from the AIRNow Program are plotted on the total PM_{2.5} map and on the graph for analysis cities that had reporting monitors for this date. In this case, the model performed very well.

Modeled Non-Fire PM_{2.5}

Modeled and Monitored PM25 Contribution

Modeled Fire PM_{2.5}

Northern California Fires 2008

Daily Forecast Graphics

3 day, 2 night outlook

Prepared by air quality meteorologist

Forecast text summary

http://cefa.dri.edu/california

1This product only includes predicted air quality impacts due to wildfire. For official air quality forecasts, go to airnow,gov or check your local air quality district website.

AQUIPT: Longer-range planning

air quality impacts planning tool

Example: planning fire next Spring Can't say what impacts will be

But can use history as a guide

Web Interface

AQUIPT: Accessible through web

air quality impacts planning tool

AQUIPT: Summary

Provides statistical answer to "what would have happened?"

Provide basic source info, it does the rest

Not just fire

Uses 1979-2006 climatology

24-hr turnaround

Working on better graphics

WFDSS - Smoke Component

Probabilistic smoke impacts to go with FSPRO's probabilistic fire growth

Working w/ Mark Finney

Thank you

Funding from National Fire Plan, USDA CSREES NRI, USFS, Joint Fire Science Program, EPA, DOI, and NASA ROSES DSS.

http://getBlueSky.org

Sim Larkin 206-732-7849 larkin@fs.fed.us Sean Raffuse 707-665-9900 sraffuse@sonomatech.com

